Vocational English II
(Meslekl Yabanci Dil II)
Week 4

Engineering Faculty
Computeer Engineering

rJ’O\ma
ﬁ®@@ @ @§§§ m

ENGLISH ¢

Hd\o ’s®
Qx- Al@

Prepared by: Dr Ercan Ezin

INTRODUCTION

THIS WEEK WE WILL WORK ON

Software Engineering Principles

BLOG POST

TITLE: Top 10 Software Engineering Principles

ing-principles/

£5
/4

| | .m\.
.“.-..‘\
)

o
3

-
(@)
)

S~
0.0

9

0

~~

9

o
()
O

A

=

o

=
(7%]
o
)
b
i

INTRODUCTIONTO
SOFTWARE
ENGINEERING
PRINCIPLES

Software engineering is complex and
multifaceted.

Principles help navigate challenges and
ensure project success.

Key benefits: quality assurance,
efficiency, collaboration,
maintainability, risk mitigation.

Applying principles ensures long-term
software success.

WHY SOFTWARE
ENGINEERING
PRINCIPLES MATTER

Quality Assurance: Reduces defects,
improves reliability.

Efficiency & Productivity: Streamlines
development, reduces waste.

Collaboration: Ensures clear guidelines
for teamwork.

Maintainability & Scalability: Enables
long-term modifications.

Risk Mitigation: Identifies and resolves
issues early.

Simplicity is key to
maintainability and readability.

PRINCIPLE #1 - ®
KISS (KEEP IT z ' Avoid unnecessary complexity.

SIMPLE, STUPID)

O Clean, concise, and readable
([) code improves efficiency.

PRINCIPLE #2 &
#3 — DRY & YAGNI

2- DRY (Don’t Repeat
Yourself): Avoid redundancy,
promote modular design.

* Code reuse enhances efficiency and reduces
errors.

3-YAGNI (You Aren’t Gonna
Need It): Only implement
required features.

* Prevent over-engineering and unnecessary
functionality.

PRINCIPLES #4 & #5 — SEPARATION OF
CONCERNS & MODULARITY

5-Modularity: Software
should be a collection of
reusable, self-contained
modules.

4-Separation of Concerns:
Break software into

independent modules.

* Each module should have a * Enables easy modification,
clear responsibility. testing, and scalability.

PRINCIPLES #6 & #7 — SRP & OCP

6-Single Responsibility 7-Open-Closed Principle
Principle (SRP): Each module, (OCP): Software should be
class, or function should have open for extension but
only one responsibility. closed for modification.
* Prevents mixing multiple * Encourages using
concerns in a single unit. abstractions and interfaces

for flexibility.

PRINCIPLES #8,
#9 & #10 — LSP,
ISP & DIP

8-Liskov Substitution Principle (LSP):
Subtypes must be substitutable for base types
without affecting functionality.

9-Interface Segregation
Principle (ISP): Clients Use smaller, more
should not depend on specific interfaces.

unused interfaces.

10-Dependency Inversion

Principle (DIP): High-level Encourages
modules should depend on LTG5

) P injection to
abstractions, not concrete improve flexibility.

implementations.

BENEFITS OF
APPLYING THESE
PRINCIPLES

Higher Software Quality: Fewer defects, better
performance.

Increased Productivity: Faster development
cycles.

Better Collaboration: Shared understanding
improves teamwork.

Reduced Technical Debt: Easier to maintain and
scale.

Greater Agility: Adaptability to changing
requirements.

Cost Savings: Minimized rework and optimized
resources.

LISTENING ACTIVITY

https://www.youtube.com/watch?v=V3TUEeB0kW0

Design Patterns

Elements of Reusable

CIean COde Object-Oriented Software

A Handbook of Agile Software Craftsmanship Erilcchha%ag emllfw

Ralph Johnson
John Vlissides

Foreword by Grady Booch

i

|
g1
{1

Davib THOMAS

¥4 -

Robert C. Martin

BOOK RECOMMENDATIONS

S

S e o

8.
9.

WORDS OF THI

L]

WEEK

. Abstraction — Hides implementation

details.

Encapsulation — Bundles data and
methods.

Cohesion — Degree of module focus.

Coupling — Dependency between modules.

Scalability — Handles growth efficiently.

Maintainability — Easy to modify software.

Reusability — Use components multiple
times.

Modularity — Divide system into modules.
Robustness — Handles errors gracefully.

10. Extensibility — Allows feature expansion.

| 1.DRY (Don't RepeatYourself) — Eliminates redundancy.

12.KISS (Keep It Simple, Stupid) — Avoids unnecessary
complexity.

13. YAGNI (You Aren't Gonna Need It) — Prevents over-
engineering.

14.Single Responsibility Principle (SRP) — One job per module.

15. Open-Closed Principle (OCP) — Extend without modifying.

16. Liskov Substitution Principle (LSP) — Maintain type
compatibility.

17.Interface Segregation Principle (ISP) — Small, specific
interfaces.

18. Dependency Inversion Principle (DIP) — Depend on
abstractions.

9. Agile Development — Iterative, flexible development.

20. Technical Debt — Future code maintenance burden.

PS: Keep a journal where you note these words with their meanings and usages in a sentence.

EOF*

*End of Fun/File

	COVER
	Slide 1: Vocational English II (Mesleki Yabancı Dil II) Week 4

	INTRODUCTION
	Slide 4: INTRODUCTION
	Slide 5: THIS WEEK WE WILL WORK ON
	Slide 6: BLOG POST
	Slide 7: Introduction to Software Engineering Principles
	Slide 8: Why Software Engineering Principles Matter
	Slide 9: Principle #1 – KISS (Keep It Simple, Stupid)
	Slide 10: Principle #2 & #3 – DRY & YAGNI
	Slide 11: Principles #4 & #5 – Separation of Concerns & Modularity
	Slide 12: Principles #6 & #7 – SRP & OCP
	Slide 13: Principles #8, #9 & #10 – LSP, ISP & DIP
	Slide 14: Benefits of Applying These Principles
	Slide 15: LISTENING ACTIVITY
	Slide 17: BOOK RECOMMENDATIONS
	Slide 18: WORDS OF THE WEEK
	Slide 19: EOF*

